Home » Kumpulan Soal SMA

Category Archives: Kumpulan Soal SMA

Prediksi Penjabaran SKL ke Butir Soal UN 2011

Dari SKL yang diberikan oleh pemerintah pusat, untuk Matematika dapat diprediksikan seperti di bawah ini!

1.       Menentukan pernyataan yang diperoleh dari penarikan kesimpulan dari dua premis yang diberikan.
2.       Menggunakan aturan pangkat
3.       Menggunakan aturan akar untuk menyederhanakan bentuk aljabar.
4.       Menyelesaikan persamaan logaritma.
5.       Menggunakan diskriminan untuk menyelesaikan masalah persamaan atau fungsi kuadrat.
6.       Menggunakan rumus jumlah dan hasil kali akar-akar persamaan kuadrat untuk menentukan unsur yang belum diketahui dari persamaan kuadrat.
7.       Menentukan persamaan kuadrat baru yang akar-akarnya berelasi linear dengan akar-akar persamaan kuadrat yang diketahui.
8.       Menentukan persamaan garis singgung lingkaran.
9.       Menentukan komposisi dua fungsi
10.   Menentukan fungsi invers.
11.   Menggunakan aturan teorema sisa atau teorema faktor.
12.   Menyelesaikan masalah sistem persamaan linear.
13.   Menyelesaikan masalah program linear.
14.   Menyelesaikan operasi matriks.
15.   Menentukan sudut antara dua vektor.
16.   Menentukan panjang proyeksi atau vektor proyeksi.
17.   Menentukan bayangan titik atau garis karena dua transformasi.
18.   Menentukan fungsi invers dari fungsi eksponen atau logaritma.
19.   Menentukan suku ke-n dari deret aritmetika.
20.   Menyelesaikan masalah yang berkaitan dengan deret aritmetika atau geometri.
21.   Menghitung jarak antara dua objek (titik, garis dan bidang) di ruang.
22.   Menghitung sudut antara dua objek (titik, garis dan bidang) di ruang.
23.   Menggunakan aturan sinus atau kosinus untuk menghitung unsur pada segi banyak.
24.   Menentukan volume bangun ruang dengan menggunakan aturan sinus dan kosinus.
25.   Menyelesaikan himpunan penyelesaian persamaan trigonometri.
26.   Menghitung nilai perbandingan trigonometri dengan menggunakan rumus jumlah dan selisih dua sudut
27.   Menghitung nilai perbandingan trigonometri dengan menggunakan rumus jumlah dan selisih sinus, kosinus dan tangen.
28.   Menghitung nilai limit fungsi aljabar.
29.   Menghitung nilai limit fungsi trigonometri.
30.   Menentukan penyelesaian dari soal aplikasi turunan fungsi.
31.   Menentukan penyelesaian dari soal aplikasi turunan fungsi.
32.   Menghitung integral tertentu fungsi aljabar.
33.   Menghitung integral tak tentu fungsi trigonometri.
34.   Menghitung integral tertentu fungsi trigonometri.
35.   Menghitung luas daerah dengan menggunakan integral.
36.   Menghitung volume benda putar dengan menggunakan integral.
37.   Menghitung ukuran pemusatan dari suatu data dalam bentuk tabel, diagram, atau grafik.
38.   Menggunakan kaidah pencacahan, permutasi
39.   Menggunakan kombinasi untuk menyelesaikan masalah yang terkait.
40.   Menghitung peluang suatu kejadian.

Calculator Tangan

Jemari kita ternyata dapat dijadikan Calculator sederhana. Tentu kita telah biasa menggunakannya untuk penjumlahan atau pengurangan. Tetapi berikut saya tampilkan video dari youtube, bagaimana menggunakan jari kita untuk perkalian 9.

Giliran Soal Matematika UN 2009

Setelah membahas soal-soal Matematika pada UN 2010, kini kita “mundur” sejenak untuk melihat soal Matematika di UN 2009.

Download link berikut dulu, ya!

http://www.ziddu.com/download/13475322/MATUN2009.pdf.html

Ulangan Semester Bikin Gemeter

Ah, masa’ sih?

Bahasa anak sekarang itu lebay dan menyengat.

Seyogyanya tidak demikian apabila semua dipersiapkan dengan baik. Persiapannya mesti luar-dalam dan lahir-pikir-bathin.

Lahir haruslah segar-bugar, gak loyo, gak flu, apalagi beser (sering ke kamar kecil). Pikir tentu telah penuh penguasaan konsep, ketrampilan proses, dan kemampuan dasar lain yang mendukung.

Misal menghadapi Matematika kelas XII IPA semester satu ini, maka konsep tentang integral, program linear, matriks, vektor, dan transformasi mestinya sudah “tertata indah” di pikiran kita. Ketrampilan mengintegralkan, menggambar luasan, mengalikan matriks, menentukan persamaan bayangan kurva setelah ditransformasi juga diperlukan, terutama “ketrampilan/ketangkasan” dalam proses. Percuma, dong kalau konsep udah mateng tapi lelet memprosesnya. Waktu terbatas. Kemudian ketrampilan dasar. Ini yang kadang membuat prihatin. Terkadang kita lama untu menghitung 18 x 11 atau 1/2 + 1/3 + 1/5. Padahal kemampuan ini sudah diasah sejak 7 tahun lalu.

Terakhir adalah bathin atau perasaan. Perasaan haruslah dalam kondisi stabil. Tidak ada perasaan was-was, pesimis, atau marah, sedih, dan patah semangat (termasuk patah hati, hehe). Mestinya, saat semesteran, sungkem kepada orang tua (supaya dapat doanya), langkah pertama: Bismillah, Ya Alloh, karuniai aku dengan hidayah dan keberuntungan, langkah selanjutnya aku bisa, aku bisa, dan aku bisa (seperti kampanye saja).

Tapi, semester telah berlalu. Resep ini jadi sia-sia.

Oh, nggak. masih ada seleksi masuk perguruan tinggi. masih ada UN yang bakal kita hadapi. ada seleksi masuk kerja (yang pingin langsung kerja).

Untuk bahan instropeksi terhadap pekerjaan Matematika semester ini, silakan download pembahasannya secara detail pada link di bawah ini. Pelajari, bandingkan dengan jawabanmu waktu itu, dan saatnya meng-kalkulasi nilai yang akan kita peroleh pada semester I ini.

Link: Pembahasan Soal Matematika Semester I

Ayo kita belajar, ya!!!

Masih tentang Latex

Ternyata sesuatu yang sudah mudah, masih ada orang yang berusaha untuk membuatnya lebih mudah. Betapa jadi mudah mengetik persamaan matematika dengan kode-kode Latex di wordpress. Namun ternyata jadi mudah lagi dengan menggunakan navigator Latex online, di site: http://www.codecogs.com/latex/eqneditor.php.

Dan bisa langsung digunakan untuk praktek, nih. Berikut saya gunakan untuk membahas beberapa soal.

1. Jika u = x^2 + 6x + 3 \rightarrow du=(2x+6)dx sehingga:

\begin{array}{rcl}\int \left ( 2x+6 \right )\left ( x^2+6x+3 \right )^4\,dx&=&\int u^4\,du\\&=&\frac{1}{5}u^5+C\\&=&\frac{1}{5}\left ( x^2 +6x+3\right )^5+C\end{array}

2. Jika u=\cos x\rightarrow du=-\sin x\,dx, maka:

\begin{array}{rcl}\int \cos^4 x\sin x\,dx&=&-\int u^4\,du\\&=&-\frac{1}{5}u^5+C\\&=&-\frac{1}{5}\cos^5 x+C\end{array}

3. Untuk u=\sin x\rightarrow du=\cos x\,dx dengan x=0\rightarrow u=0\; dan\; x=\frac{1}{2}\pi \rightarrow u=1, maka:

\begin{array}{rcl}\int_{0}^{\frac{1}{2}\pi}{\sqrt{\sin x}\cos x\,dx}&=&\int_{0}^{1}u^\frac{1}{2}\,du\\&=&\left [ \frac{2}{3}u^\frac{3}{2} \right ]_0^1\\&=&\frac{2}{3}-0\\&=&\frac{2}{3}\end{array}

Ehm, lebih mudah dengan Latex.

Tapi malam telah larut,
sayup terdengar lagu “Because I Love You”,
dari radio tetangga yang lupa mematikannya,
dan rasa lelah telah menerpa tubuh ini,
Bismika Allahumma ahya, wa bismika amut.

Ayo Siap UN 2009

Genderang “perang” Ujian Nasional SMA telah dipukul. Tanggal 28 April 2009 akan dimulai dengan bidang studi Bahasa Indonesia, Biologi, dan Sosiologi.

Perang ini tentu melibatkan banyak pihak. Orang tua siswa sebagai pen-support logistik material dan spirit, guru bidang studi sebagai pen-support materi dan strategi, dan siswa sebagai “tentara” yang berperang.

Dunia maya juga tidak mau ketinggalan. Buanyak sekali site dan blog yang menyediakan materi dan soal-soal, baik prediksi maupun soal-soal UN tahun-tahun lalu.

Blog “Ayo Belajar” ini mau ikut juga meramaikan persiapan “peperangan” ini. Berikut dapat di-download untuk bahan berlatih siswa.

DOWNLOAD SOAL UN SMA GRATIS

Kumpulan Soal untuk SMA

Bagi yang ingin berlatih soal-soal ujian, baik UN atau SPMB untuk SMA, berikut file-file yang dapat didownload.

DOWNLOAD SOAL-SOAL UN/SPMB/UM-UGM/USM-ITB

Follow

Get every new post delivered to your Inbox.